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where
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R™ & — y|? =
e These are called fractional integrals of order « or Riesz potentials
e This representation formula is key in the area

e It goes back to Sobolev
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Thm TFAE, Let g > (which could be a measure), 0 < a < n
1) The following Poincaré inequality holds

1(@) = foldw < (@) gdx,
£ 7@~ Jol g
2) The following pointwise estimate holds

[f(x) = fql < enda(gx@)(z)  aex e

3) If uis any measure on R, and O < a < n, then for any cube Q,
n_ <C M u(x , dx
I(f = fa)xall, = (00 Qg( p(a)) n

We observe that 2) follows directly from 3) by testing with Dirac measures
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The proof follows from (4) letting £(Q)) — oo and using that f5 — O.
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1) = 2). (ideas of a paper by Franchi-Lu-Wheeden) We use the Lebesgue
differentiation theorem.
Let x € Q. Then there is a chain {Qy};>1 of nested dyadic subcubes of Q
such that Q1 = Q, Q41 C Qf forall k > 1 and

{z} = () Q&

k>1

Let fp, be the average of f over the cube Q. Then by the LDD, there exists
anullset N suchthatforallz € E:=Q\ N

[f(@) = fol =1 im fq, — fol = > foi — fo
k>1

Now, using the dyadic structure of the chain, we obtain that
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