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Poincaré (1,1) inequality:

1

|Q|

∫
Q
|f(x)− fQ|dx ≤ Cn

`(Q)

|Q|

∫
Q
|∇f(x)| dx

It follows from the following pointwise estimate:

|f(x)− fQ| ≤ c I1(|∇f |χQ)(x) x ∈ Q

where
Iαf(x) = c

∫
Rn

f(y)

|x− y|n−α
dy 0 < α < n

• These are called fractional integrals of order α or Riesz potentials

• This representation formula is key in the area



Characterization of pointwise Integral formula
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• It goes back to Sobolev
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We observe that 2) follows directly from 3) by testing with Dirac measures
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The proof follows from (4) letting `(Q)→∞ and using that fQ → 0.
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Now, using the dyadic structure of the chain, we obtain that
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4) =⇒ 1).
This follows by considering as measure µ the Lebesgue measure.



Proof IV
Now we estimate the inner norm of the kernel K(x, y) = 1

|x−y|n−α , x, y ∈ Q.
By definition of the weak norm, we have

‖K(·, y)χQ‖
L

n
n−α,∞
µ

= sup
t>0

(
t

n
n−αµ

(
x ∈ Q :

1

|x− y|n−1
> t

)) 1
n

n−α

. sup
r>0

(
r−nµ (x ∈ Q : |x− y| < r)

)n−α
n

. sup
r>0

(
|B(y, r)|−1µ (B(y, r))

)n−α
n

. (Mcµ(y))
n−α
n

Recall that Mc denotes the centered maximal function. Therefore, collecting
all estimates, we obtain that

‖(f − fQ)χQ‖
L

n
n−α,∞
µ

≤ C
∫
Q
g(y)(Mµ(y))

n−α
n dy

3) =⇒ 4)
This follows from the ”truncation” method (seems to be due to Maz’ja).
4) =⇒ 1).
This follows by considering as measure µ the Lebesgue measure.
�


